A New Anthracycline Antibiotic Micromonomycin from *Micromonospora* sp.

Shu-Wei Yang,* Tze-Ming Chan, Joseph Terracciano,
Reena Patel, David Loebenberg, Guodong Chen,
Mahesh Patel, Vincent Gullo,
Birendra Pramanik and Min Chu[†]

Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA

(Received for publication June 3, 2004)

In the course of our continuing search for novel antimicrobial agents, $^{1\sim5)}$ we have isolated a novel antibacterial anthracycline, micromonomycin (1), from culture *Micromonospora* sp. Micromonomycin was identified as a new anthracycline using high resolution ESI-MS and extensive NMR spectroscopic analyses. In this paper, we describe the isolation and structure elucidation of 1. The biological activity of 1 against Gram-positive and Gram-negative bacterial strains as well as fungal pathogens is also reported.

The germination and fermentation conditions of this culture were described previously.⁵⁾ The fermentation broth (2 liters) was stirred with 100 g of NaCl and 4 liters of acetonitrile (MeCN). The organic layer was separated and dried in vacuum. The extract was absorbed onto the polymeric resin, CG161 (~100 ml) and the NaCl salt was washed out with water (200 ml). The absorbed organic material was eluted with 200 ml 40% aq. MeCN, and 80% aq. MeCN to yield 432 and 73 mg of dried material, respectively, after removing solvent in vacuo. The organic material of 80% MeCN fraction was fractionated on an HPLC semi-preparative ODS-A column (YMC, 120 Å, S-7, 20 mm×250 mm). The column was eluted with a three-step gradient of MeCN-H2O: 5~40% MeCN in 50 minutes, 40~85% gradient in 35 minutes, and then 85% MeCN isocratic for another 15 minutes, with a flow rate of 15 ml/minute. Fractions were collected (13 ml/fraction) by a fraction collector. Pure 1 (~1 mg) and 7-deoxyauramycinone $(2, \sim 2 \text{ mg})$ were obtained with two injections of total 73 mg of above 80% MeCN fraction at retention time \sim 68 and 81 minutes, respectively.

On the basis of analysis of high-resolution ESI-MS data,

the molecular formula of 1 was established as $C_{29}H_{30}O_{11}$ ([M+Na]⁺: Found 577.1700; calcd. 577.1680) indicating 15 degree of unsaturation in the molecule (performed on a PE Sciex QSTAR mass spectrometer, positive ion ESI-HR-MS measurements). The structure of 1 was further elucidated by extensive NMR data analysis. In the downfield region of the ¹³C NMR spectrum, one carbonyl (C-7', δ 210.1) and a carboxyl signals (C-14, δ 171.5) were observed and assigned to an acyl and a methyl ester groups, respectively, based on the long range correlations of CH₃-15 (δ 3.87) to C-14, and CH₃-8' (δ 2.24, s) to C-7' observed in the HMBC spectrum. The ¹³C signals of two conjugated-carbonyl (C-5, δ 192.6; C-12, δ 181.3) and twelve aromatic carbons in the downfield region indicated the anthraquinone moiety. This was confirmed by HMBC and ¹H-¹H COSY correlations shown in Figure 1. Among those correlations, both H-1 (δ 7.84, d) and H-11 (δ 7.59, s) having correlations to C-12 (δ 181.3, s) indicated the location of carbonyl C-12 and led to assignment of regio location for H-1 and H-11. No observation of any proton having long-range correlation to the carbonyl C-5 signal in the HMBC spectrum suggested that both C-4 (δ 162.6) and C-6 (δ 161.6) were substituted. Two hydroxyl proton

Micromonomycin (1)

7-Deoxyauramycinone (2)

^{*} Corresponding author: shu-wei.yang@spcorp.com

[†] Present address: Cubist Pharmaceuticals, Inc. 65 Hayden Ave. Lexington, MA 02421, USA.

Table 1. NMR spectral data for compound 1 in CDCl₃.^a

C/H	¹ Η (δ)	¹³ C (δ)
no.		
1	7.84, dd, <i>J</i> = 7.5, 1.2	120.2 d
2	7.70, dd, $J = 7.5, 8.4$	137.4 d
3	7.32, dd, $J = 8.4$, 1.2	124.8 d
4		162.6 s
4a		115.8 s
5		192.6 s
5a		114.3 s
6		161.6 s
6a		131.0 s
7	5.30, dd, $J = 4.4$, 3.2	69.2 d
8α	2.51, dd, <i>J</i> = 14.6, 3.2	40.8 t
8 β	2.03, dd, $J = 14.6$, 4.4	
9		69.7 s
10	3.96, s	57.3 d
10a		142.9 s
11	7.59, s	121.5 d
11a		132.7 s
12		181.3 s
12a		133.5 s
13	1.50 s	29.2 q
14		171.5 s
15	3.87, s	52.5 q
1'	5.44, brs	99.8 d
2'-α	2.13, m	24.5 t
2'-β	1.74, m	
3'-α	1.45, m	27.5 t
3'-β 4'	2.13, m	79.5.0
5'	4.58, q, <i>J</i> = 6.6	78.5 s
6'	1.04, d, <i>J</i> = 6.6	66.8 d 14.7 q
7'	1.04, d, 0 = 0.0	210.1 s
, 8'	2.24, s	210.1 S 24.7 q
4-O <i>H</i>	12.02, s	27.1 Y
6-O <i>H</i>	12.69, s	
0-011 0H	3.85, s	
ОН	4.34, s	
	··· ···	

^a Recorded on a Varian Unity 500 NMR instrument at 500 MHz for ¹H and 125 MHz for ¹³C, using standard Varian pulse sequence programs (VNMR Version 6.1 Software). δ in ppm; J in Hz.

Fig. 1. 2D NMR correlations of 1.

signals (δ 12.02, s; δ 12.69, s) in the downfield region of the ¹H-NMR spectrum revealed the presence of the strong hydrogen bonding, and the HMBC correlations of OH-4 and OH-6 to their adjacent carbons (Figure 1) confirmed the assignment of the hydroxyl substitutions on C-4 and C-6. This is a typical phenomenon observed in the anthraquinone type of the compounds with β -hydroxyl substitution to the carbonyl functionality of ring B.6~8) Thus, rings A, B, and C were identified. The connectivity of rings C and D was established based on detailed correlations shown in Figure 1, for instance, the correlation of H-10 (δ 3.96, s) and H-11 to a quaternary aromatic carbon (C-10a, δ 142.9), the correlations of CH₃-13 (δ 1.50, s) to C-8 $(\delta 40.8)$, C-9 $(\delta 69.7)$, and C-10 $(\delta 57.3)$ observed in the HMBC spectrum, and H-7 (δ 5.30, dd) and H₂-8 (δ 2.51, 2.03) observed in the ¹H-¹H COSY spectrum. Connectivity of C-7 (δ 69.2) and C-6a (δ 131.0) was determined by the observation of the long-range correlation from H-8 (δ 2.51) to C-6a and C-7. Thus, the anthracycline skeleton, which belongs to auramycinone^{$6\sim8$}), was determined.

Remaining 6 carbons consist of one hemi-acetal (H-1', δ 5.44; C-1', δ 99.8), two methylenes (C-2', δ 24.5; C-3', δ 27.5), one *O*-substituted quaternary carbon (C-4', δ 78.5), one oxygenated methine carbon (C-5', δ 66.8), and a methyl group (C-6', δ 14.7). These functionalities plus the previously identified acyl group could be assembled to an acylated sugar by analyses of the HMBC and 1 H- 1 H COSY data shown in Figure 1. These correlations led to establishment of the 2,3,6-tri-deoxy sugar moiety with an unusual acyl substitution on C-4' position through C-C

Fig. 2. Key NOE correlations in ring D and glycoside of 1.

bond. The deoxy-sugar was assigned to the 7-*O* position attachment based on the correlation of H-1' to C-7 in the HMBC spectrum and the NOE correlation of H-7 and H-1'. Thus, the full structure was elucidated.

The relative stereochemistry of **1** was determined by the analyses of the 1 H- 1 H coupling patterns and the NOE data. In the ring D, NOE correlations between CH₃-15 and CH₃-13, CH₃-15 and H-8 β , and CH₃-13 and H-7 established the same (β) orientation of these protons. Hence, 7-O-glycoside is substituted on the opposite (α) orientation. This was supported by the observation of NOE correlations of H-8 α (δ 2.51) to H-5' (δ 4.58) and CH₃-6' (δ 1.04) of glycoside, which showed that they are oriented to the same direction. Thus, the relative stereochemistry of ring D was determined as shown in Figure 2. This configuration is in consistent with that of related known anthracyclines, such as auramycins.^{7,8)}

The small coupling pattern of H-1' to H-2' α (δ 2.13) and H-2' β (δ 1.74) established the equatorial orientation of H-1'. NOE correlation between H-3' β (δ 2.13) and H-5' showed the typical axial-axial space proximity. Acyl substitution on C-4' (δ 78.5) was determined as β equatorial position as a result of the observation of NOE between H-5' and CH₃-8'. (δ 2.24). Thus, the structure elucidation of 1 was completed.

Compound **2** was identified as 7-deoxyauramycinone by using extensive 1D and 2D NMR analyses, and by comparing with those of compound **1** and the literature data. ⁹⁾

Compound 1 exhibited antibacterial activity against

Table 2. Antimicrobial activity of compound 1, MIC-48 hours (μ g/ml).

Straina	MIC (μg/mL)	
Strain	1	Gentamicin
S. aureus supersensitive (HS999)	1	8
S. aureus (ATCC 29213)	2	0.06
S. pneumoniae (ATCC 49619)	0.5	0.5
E. coli supersensitive (HS294)	4	2
E. coli (ATCC 10536)	>128	0.125
S. cerevisiae supersensitive (PM503)	32	>64
C. albicans (C43)	32	>64
A. fumigatus (ND158)	>128	>64

a Incubation for 24 hours for bacteria, 48 hours for fungi

various strains. The MIC values of **1** are listed in Table 2, in comparison with gentamicin as reference standard. Micromonomycin (**1**) showed potent inhibitory activity against *Staphylococcus aureus*, *Streptococcus pneumoniae*, and supersensitive *E. coli*¹⁰⁾ strains with MIC values $1\sim2$, 0.5, and $4\mu g/ml$, respectively, and also displayed weak antifungal activity against *Saccharomyces cerevisiae* (PM503)¹⁾ and *Candida albicans* (C43).

Acknowledgement

The authors are grateful to Mr. Lewis B. Fan for extract preparation, Mr. Erik Langsdorf for culture fermentation, and Ms. Eleanor Shargorodskaya for database search.

References and Notes

- YANG, S.-W.; T.-M. CHAN, S. A. POMPONI, G. CHEN, D. LOEBENBERG, A. WRIGHT, M. PATEL, V. GULLO, B. PRAMANIK & M. CHU: Structure elucidation of a new antifungal sterol sulfate, Sch 575867, from a deep-water marine sponge (Family: Astroscleridae). J. Antibiotics 56: 186~189, 2003
- 2) Yang, S.-W.; A. Buevich, T.-M. Chan, J. Terracciano, G. Chen, D. Loebenberg, M. Patel, E. Boehm, V. Gullo, B. Pramanik & M. Chu: A new antifungal sterol sulfate, Sch 601324, from *Chrysosporium* sp. J. Antibiotics 56: 419~422, 2003

- 3) Yang, S.-W.; T.-M. Chan, S. A. Pomponi, W. Gonsiorek, G. Chen, A. E. Wright, W. Hipkin, M. Patel, V. Gullo, B. Pramanik, P. Zavodny & M. Chu: A new sesterterpene, Sch 599473, from a marine sponge, *Ircinia* sp. J. Antibiotics 56: 783~786, 2003
- 4) YANG, S.-W.; T.-M. CHAN, S. A. POMPONI, G. CHEN, A. E. WRIGHT, M. PATEL, V. GULLO, B. PRAMANIK & M. CHU: A new bicyclic guanidine alkaloid, Sch 575948, from a marine sponge, *Ptilocaulis spiculifer*. J. Antibiotics 56: 970~972, 2003
- 5) YANG, S.-W.; T.-M. CHAN, J. TERRACCIANO, D. LOEBENBERG, G. CHEN, M. PATEL, V. GULLO, B. PRAMANIK & M. CHU: Struture elucidation of a new diketopiperazine Sch 725418 from *Micromonospora* sp. J. Antibiotics 57: 345~347, 2004
- 6) FUGIWARA, A.; T. HOSHINO, M. TAZOE & M. FUJIWARA: Auramycins and sulfurmycins, new anthracycline antibiotics: Characterization of aglycones, auramycinone and sulfurmycinone. J. Antibiotics 34: 608~610, 1981
- 7) Fugiwara, A.; T. Hoshino, M. Tazoe & M. Fujiwara:

- New anthracycline antibiotics, auramycins and sulfurmycins I. Isolation and characterization of auramycins A and B, and sulfurmycins A and B. J. Antibiotics $35:164\sim175,1982$
- 8) Hoshino, T.; M. Tazoe, S. Nomura & A. Fujiwara: New anthracycline antibiotics, auramycins and sulfurmycins II. Isolation and characterization of 10 minor components (C~G). J. Antibiotics 35: 1271~1279, 1982
- 9) Maskey, R. P.; I. Grun-Wollny & H. Laatsch: Resomycins A~C: New anthracyclinone antibiotics formed by a terrestrial *Streptomyces* sp. J. Antibiotics 56: 795~800, 2003
- 10) YANG, S.-W.; L. Xu, R. MIERZWA, L. HE, J. TERRACCIANO, M. PATEL, V. GULLO, T. BLACK, W. ZHAO, T.-M. CHAN & M. CHU: Two novel antibiotics, Sch 419558 and Sch 419559, produced by *Pseudomonas fluorescens*: Effect on activity by overexpression of RpoE. Bioorg. Med. Chem. 12: 3333~3338, 2004